2,198 research outputs found

    Stable and Efficient Structures for the Content Production and Consumption in Information Communities

    Full text link
    Real-world information communities exhibit inherent structures that characterize a system that is stable and efficient for content production and consumption. In this paper, we study such structures through mathematical modelling and analysis. We formulate a generic model of a community in which each member decides how they allocate their time between content production and consumption with the objective of maximizing their individual reward. We define the community system as "stable and efficient" when a Nash equilibrium is reached while the social welfare of the community is maximized. We investigate the conditions for forming a stable and efficient community under two variations of the model representing different internal relational structures of the community. Our analysis results show that the structure with "a small core of celebrity producers" is the optimally stable and efficient for a community. These analysis results provide possible explanations to the sociological observations such as "the Law of the Few" and also provide insights into how to effectively build and maintain the structure of information communities.Comment: 21 page

    Awareness as an Equilibrium Notion: Normal-Form Games

    Get PDF
    We study normal-form games where parts of the games may not be common knowledge. Agents may be aware only of some facts describing the game. An awareness architecture is given by agents' awareness, and an infinite regress of conjectures about other agents and their conjectures. The problem is specified by the true underlying normal-form game, and by the set of possible awareness architectures. Awareness equilibrium is given by a feasible awareness architecture for each agent, strategies that are played and these strategies have to be consistent with the awareness architectures and agents' rationality. We first study games with complete information, where each player may be aware of a subset of the set of possible actions. We then study games with incomplete information, where each player may be aware of a subset of the set of types and probability over types. Our results illustrate how a departure from the assumption of common knowledge alters equilibium predictions

    Badger: Complexity Analysis with Fuzzing and Symbolic Execution

    Full text link
    Hybrid testing approaches that involve fuzz testing and symbolic execution have shown promising results in achieving high code coverage, uncovering subtle errors and vulnerabilities in a variety of software applications. In this paper we describe Badger - a new hybrid approach for complexity analysis, with the goal of discovering vulnerabilities which occur when the worst-case time or space complexity of an application is significantly higher than the average case. Badger uses fuzz testing to generate a diverse set of inputs that aim to increase not only coverage but also a resource-related cost associated with each path. Since fuzzing may fail to execute deep program paths due to its limited knowledge about the conditions that influence these paths, we complement the analysis with a symbolic execution, which is also customized to search for paths that increase the resource-related cost. Symbolic execution is particularly good at generating inputs that satisfy various program conditions but by itself suffers from path explosion. Therefore, Badger uses fuzzing and symbolic execution in tandem, to leverage their benefits and overcome their weaknesses. We implemented our approach for the analysis of Java programs, based on Kelinci and Symbolic PathFinder. We evaluated Badger on Java applications, showing that our approach is significantly faster in generating worst-case executions compared to fuzzing or symbolic execution on their own

    On the algebraic invariant curves of plane polynomial differential systems

    Full text link
    We consider a plane polynomial vector field P(x,y)dx+Q(x,y)dyP(x,y)dx+Q(x,y)dy of degree m>1m>1. To each algebraic invariant curve of such a field we associate a compact Riemann surface with the meromorphic differential ω=dx/P=dy/Q\omega=dx/P=dy/Q. The asymptotic estimate of the degree of an arbitrary algebraic invariant curve is found. In the smooth case this estimate was already found by D. Cerveau and A. Lins Neto [Ann. Inst. Fourier Grenoble 41, 883-903] in a different way.Comment: 10 pages, Latex, to appear in J.Phys.A:Math.Ge

    Assessing ECG signal quality indices to discriminate ECGs with artefacts from pathologically different arrhythmic ECGs

    Get PDF
    False and non-actionable alarms in critical care can be reduced by developing algorithms which assess the trueness of an arrhythmia alarm from a bedside monitor. Computational approaches that automatically identify artefacts in ECG signals are an important branch of physiological signal processing which tries to address this issue. Signal quality indices (SQIs) derived considering differences between artefacts which occur in ECG signals and normal QRS morphology have the potential to discriminate pathologically different arrhythmic ECG segments as artefacts. Using ECG signals from the PhysioNet/Computing in Cardiology Challenge 2015 training set, we studied previously reported ECG SQIs in the scientific literature to differentiate ECG segments with artefacts from arrhythmic ECG segments. We found that the ability of SQIs to discriminate between ECG artefacts and arrhythmic ECG varies based on arrhythmia type since the pathology of each arrhythmic ECG waveform is different. Therefore, to reduce the risk of SQIs classifying arrhythmic events as noise it is important to validate and test SQIs with databases that include arrhythmias. Arrhythmia specific SQIs may also minimize the risk of misclassifying arrhythmic events as noise

    Rotation as Contagion Mitigation

    Get PDF
    To prevent the spread of an infection an organization obeys social distancing restrictions and thus limits the number of its members physically present on a given day. We study rotation schemes in which mutually exclusive groups are active on different days. The frequency of rotation affects risk over the duration of diffusion prior to the time the organization is able to react to the infection. If this reaction time is speedy, then such risk is undesirable since prevalence is initially convex in time. In this case, frequent rotation acts as insurance against exposure-time risk and is optimal. Infrequent rotation becomes optimal if the organization reacts slowly. Cross-mixing of the rotating subpopulations is detrimental because it increases contacts between sick and healthy individuals. However, the effect of mixing is small if the terminal prevalence is low in the absence of mixing

    Public goods and decay in networks

    Get PDF
    We propose a simple behavioral model to analyze situations where (1) a group of agents repeatedly plays a public goods game within a network structure and (2) each agent only observes the past behavior of her neighbors, but is affected by the decisions of the whole group. The model assumes that agents are imperfect conditional cooperators, that they infer unobserved contributions assuming imperfect conditional cooperation by others, and that they have some degree of bounded rationality. We show that our model approximates quite accurately regularities derived from public goods game experiments

    Merit of test: perspective of information economics

    Get PDF
    This article assesses the merit of a test through the lenses of economics, with applications to SARS-CoV-2. This allows us to rank distinct tests and to show that this ranking is not universal; it depends on the pre-test information available to the decision-maker and the losses stemming from incorrect actions. We provide a method to select, from multiple tests with different sensitivity and specificity, the test that helps the decision-maker the most to achieve her objective

    Analysis of normal levels of free glycosaminoglycans in urine and plasma in adults

    Get PDF
    Plasma and urine glycosaminoglycans (GAGs) are long, linear sulfated polysaccharides that have been proposed as potential noninvasive biomarkers for several diseases. However, owing to the analytical complexity associated with the measurement of GAG concentration and disaccharide composition (the so-called GAGome), a reference study of the normal healthy GAGome is currently missing. Here, we prospectively enrolled 308 healthy adults and analyzed their free GAGomes in urine and plasma using a standardized ultra-high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry method together with comprehensive demographic and blood chemistry biomarker data. Of 25 blood chemistry biomarkers, we mainly observed weak correlations between the free GAGome and creatinine in urine and hemoglobin or erythrocyte counts in plasma. We found a higher free GAGome concentration - but not a more diverse composition - in males. Partitioned by gender, we also established reference intervals for all detectable free GAGome features in urine and plasma. Finally, we carried out a transference analysis in healthy individuals from two distinct geographical sites, including data from the Lifelines Cohort Study, which validated the reference intervals in urine. Our study is the first large-scale determination of normal free GAGomes reference intervals in plasma and urine and represents a critical resource for future physiology and biomarker research
    • …
    corecore